viernes, 21 de junio de 2013

Fusión nuclear

La liberación de energía nuclear puede producirse en el extremo bajo de la curva de energías de enlace (ver tabla adjunta) a través de la fusión de dos núcleos ligeros en uno más pesado. La energía irradiada por el Sol se debe a reacciones de fusión de este tipo que se producen en su interior a gran profundidad. A las enormes presiones y temperaturas que existen allí, los núcleos de hidrógeno se combinan a través de una serie de reacciones que equivalen a la ecuación (1) y producen casi toda la energía liberada por el Sol. En estrellas más masivas que el Sol, otras reacciones llevan al mismo resultado.



La fusión nuclear artificial se consiguió por primera vez a principios de la década de 1930, bombardeando un blanco que contenía deuterio (el isótopo de hidrógeno de masa 2) con deuterones (núcleos de deuterio) de alta energía mediante un ciclotrón (véase Aceleradores de partículas). Para acelerar el haz de deuterones se necesitaba una gran cantidad de energía, de la que la mayoría aparecía como calor en el blanco. Eso hacía que no se produjera una energía útil neta. En la década de 1950 se produjo la primera liberación a gran escala de energía de fusión, aunque incontrolada, en las pruebas de armas termonucleares realizadas por Estados Unidos, la URSS, Gran Bretaña y Francia. Una liberación tan breve e incontrolada no puede emplearse para la producción de energía eléctrica.
En las reacciones de fisión estudiadas anteriormente, el neutrón, que no tiene carga eléctrica, puede acercarse fácilmente a un núcleo fisionable (por ejemplo, uranio 235) y reaccionar con él. En una reacción de fusión típica, en cambio, cada uno de los dos núcleos que reaccionan tiene una carga eléctrica positiva, y antes de que puedan unirse hay que superar la repulsión natural que ejercen entre sí, llamada repulsión de Coulomb. Esto ocurre cuando la temperatura del gas es suficientemente alta, entre 50 y 100 millones de grados centígrados. En un gas formado por los isótopos pesados del hidrógeno, deuterio y tritio, a esa temperatura se produce la reacción de fusión que libera unos 17,6 MeV por cada fusión. La energía aparece en un primer momento como energía cinética del núcleo de helio 4 y el neutrón, pero pronto se convierte en calor en el gas y los materiales próximos.



Si la densidad del gas es suficiente —a esas temperaturas basta una densidad correspondiente a unas 10-5 atmósferas, casi un vacío— el núcleo de helio 4 puede transferir su energía al gas hidrógeno circundante, con lo que mantiene la temperatura elevada y permite que se produzca una reacción de fusión en cadena. En esas condiciones se dice que se ha producido la “ignición nuclear”.
Los problemas básicos para alcanzar las condiciones para la fusión nuclear útil son: 1) calentar el gas a temperaturas tan altas; 2) confinar una cantidad suficiente de núcleos durante un tiempo lo bastante largo para permitir la liberación de una energía mayor que la necesaria para calentar y confinar el gas. Un problema importante que surge después es la captura de esta energía y su conversión en electricidad.
A temperaturas superiores a los 100.000 °C, todos los átomos de hidrógeno están ionizados. El gas está formado por un conjunto eléctricamente neutro de núcleos con carga positiva y electrones libres con carga negativa. Este estado de la materia se denomina plasma.
Los materiales ordinarios no pueden contener un plasma lo suficientemente caliente para que se produzca la fusión. El plasma se enfriaría muy rápidamente, y las paredes del recipiente se destruirían por las altas temperaturas. Sin embargo, como el plasma está formado por núcleos y electrones cargados, que se mueven en espiral alrededor de líneas de campo magnético intensas, el plasma puede contenerse en una zona de campo magnético de la forma apropiada.
Para que un dispositivo de fusión resulte útil, la energía producida debe ser mayor que la energía necesaria para confinar y calentar el plasma. Para que esta condición se cumpla, el producto del tiempo de confinamiento, t, y la densidad del plasma, n, debe superar el valor 1014. La relación t n ≥ 1014 se denomina criterio de Lawson.
Desde 1950 se han llevado a cabo numerosos proyectos para la confinación magnética de plasma en Estados Unidos, la antigua Unión Soviética, Gran Bretaña, Japón y otros países. Se han observado reacciones termonucleares, pero el número de Lawson fue pocas veces superior a 1012. Sin embargo, uno de los dispositivos —el tokamak, sugerido originalmente en la URSS por Ígor Tamm y Andréi Sajárov— comenzó a arrojar resultados prometedores a principios de la década de 1960.
La cámara de confinamiento de un tokamak tiene forma toroidal, con un diámetro interior de aproximadamente 1 m y un diámetro exterior de alrededor de 3 m. En esta cámara se establece un campo magnético toroidal de unos 5 teslas mediante grandes electroimanes. La intensidad de este campo es unas 100.000 veces mayor que la del campo magnético de la Tierra en la superficie del planeta. Las bobinas que rodean la cámara inducen en el plasma una corriente longitudinal de varios millones de amperios. Las líneas de campo magnético resultantes son espirales dentro de la cámara, que confinan el plasma.
Después de que en varios laboratorios funcionaran con éxito tokamaks pequeños, a principios de la década de 1980 se construyeron dos dispositivos de gran tamaño, uno en la Universidad de Princeton, en Estados Unidos, y otro en la URSS. En el tokamak, el plasma alcanza una temperatura elevada por el calentamiento resistivo producido por la inmensa corriente toroidal, y en los nuevos aparatos grandes, un calentamiento adicional mediante la inyección de haces neutrales debería producir condiciones de ignición.



Otra posible vía para obtener energía de la fusión es el confinamiento inercial. En esta técnica, el combustible (tritio o deuterio) está contenido en una pequeña bolita que se bombardea desde distintas direcciones con un haz láser de pulsos. Esto provoca la implosión de la bolita y desencadena una reacción termonuclear que causa la ignición del combustible. Los avances en la investigación de la fusión son prometedores, pero probablemente hagan falta décadas para desarrollar sistemas prácticos que produzcan más energía de la que consumen. Además, las investigaciones son sumamente costosas.
Sin embargo, en los primeros años de la década de 1990 se realizaron algunos avances. En 1991, se generó por primera vez en la historia una potencia significativa (unos 1,7 MW) a partir de la fusión nuclear controlada, en el laboratorio de la Cámara Toroidal Conjunta Europea (JET, siglas en inglés), en Gran Bretaña. En diciembre de 1993, los investigadores de la Universidad de Princeton emplearon el Reactor Experimental de Fusión Tokamak para producir una reacción de fusión controlada que generó 5,6 megavatios. No obstante, tanto el JET como el Reactor Experimental de Fusión Tokamak consumieron más energía de la que produjeron durante su funcionamiento.

Si la energía de fusión llega a ser practicable, ofrecería las siguientes ventajas: 1) una fuente ilimitada de combustible, el deuterio procedente de los océanos; 2) imposibilidad de un accidente en el reactor, ya que la cantidad de combustible en el sistema es muy pequeña, y 3) residuos mucho menos radiactivos y más sencillos de manejar que los procedentes de sistemas de fisión.

Fisión nuclear

Fisión nuclear, división de un núcleo atómico en dos fragmentos de tamaño similar. Véase Energía nuclear; Armas nucleares.

Energía nuclear, energía liberada durante la fisión o fusión de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan con mucho a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.

La energía de cualquier sistema, ya sea físico, químico o nuclear, se manifiesta por su capacidad de realizar trabajo o liberar calor o radiación. La energía total de un sistema siempre se conserva, pero puede transferirse a otro sistema o convertirse de una forma a otra.
Hasta el siglo XIX, el principal combustible era la leña, cuya energía procede de la energía solar acumulada por las plantas. Desde la Revolución Industrial, los seres humanos dependen de los combustibles fósiles —carbón o petróleo—, que también son una manifestación de la energía solar almacenada. Cuando se quema un combustible fósil como el carbón, los átomos de hidrógeno y carbono que lo constituyen se combinan con los átomos de oxígeno del aire, produciéndose una oxidación rápida en la que se forman agua y dióxido de carbono y se libera calor, unos 1,6 kilovatios hora por kilogramo de carbón, o unos 10 electrovoltios (eV) por átomo de carbono. Esta cantidad de energía es típica de las reacciones químicas que corresponden a cambios en la estructura electrónica de los átomos. Parte de la energía liberada como calor mantiene el combustible adyacente a una temperatura suficientemente alta para que la reacción continúe.

La fisión nuclear es una reacción en la cual un núcleo pesado, al ser bombardeado con neutrones, se convierte en inestable y se descompone en dos núcleos, cuyos tamaños son del mismo orden de magnitud, con gran desprendimiento de energía y la emisión de dos o tres neutrones.
Estos neutrones, a su vez, pueden ocasionar más fisiones al interaccionar con nuevos núcleos fisionables que emitirán nuevos neutrones y así sucesivamente. Este efecto multiplicador se conoce con el nombre de reacción en cadena. En una pequeña fracción de segundo, el número de núcleos que se han fisionado libera una energía un millón de veces mayor que la obtenida al quemar un bloque de carbón o explotar un bloque de dinamita de la misma masa.
Debido a la rapidez que tiene lugar una reacción nuclear, la energía se desprende mucho más rápidamente que en una reacción química.
Si se logra que sólo uno de los neutrones liberados produzca una fisión posterior, el número de fisiones que tienen lugar por segundo es constante y la reacción está controlada. Este es el principio de funcionamiento en el que está basado los reactores nucleares, que son fuentes controlables de energía nuclear de fisión.

Radioactividad

Radiactividad, desintegración espontánea de núcleos atómicos mediante la emisión de partículas subatómicas llamadas partículas alfa y partículas beta, y de radiaciones electromagnéticas denominadas rayos X y rayos gamma. El fenómeno fue descubierto en 1896 por el físico francés Antoine Henri Becquerel al observar que las sales de uranio podían ennegrecer una placa fotográfica aunque estuvieran separadas de la misma por una lámina de vidrio o un papel negro. También comprobó que los rayos que producían el oscurecimiento podían descargar un electroscopio, lo que indicaba que poseían carga eléctrica. En 1898, los químicos franceses Marie y Pierre Curie dedujeron que la radiactividad es un fenómeno asociado a los átomos e independiente de su estado físico o químico. También llegaron a la conclusión de que la pechblenda, un mineral de uranio, tenía que contener otros elementos radiactivos ya que presentaba una radiactividad más intensa que las sales de uranio empleadas por Becquerel. El matrimonio Curie llevó a cabo una serie de tratamientos químicos de la pechblenda que condujeron al descubrimiento de dos nuevos elementos radiactivos, el polonio y el radio. Marie Curie también descubrió que el torio es radiactivo. En 1899, el químico francés André Louis Debierne descubrió otro elemento radiactivo, el actinio. Ese mismo año, los físicos británicos Ernest Rutherford y Frederick Soddy descubrieron el gas radiactivo radón, observado en asociación con el torio, el actinio y el radio.


Tipos de radiación:

La hipótesis nuclear:

En la época en que se descubrió la radiactividad, los físicos creían que el átomo era el bloque de materia último e indivisible. Después se comprobó que las partículas alfa y beta son unidades discretas de materia, y que la radiactividad es un proceso en el que los átomos se transforman (mediante la emisión de una de estas dos partículas) en nuevos tipos de átomos con propiedades químicas nuevas. Esto llevó al reconocimiento de que los propios átomos deben tener una estructura interna, y que no son las partículas últimas y fundamentales de la naturaleza.



En 1911, Rutherford demostró la existencia de un núcleo en el interior del átomo mediante experimentos en los que se desviaban partículas alfa con láminas delgadas de metal. Desde entonces, la hipótesis nuclear ha evolucionado hasta convertirse en una teoría muy elaborada de la estructura atómica, que permite explicar todo el fenómeno de la radiactividad. En resumen, se ha comprobado que el átomo está formado por un núcleo central muy denso, rodeado por una nube de electrones. El núcleo, a su vez, está compuesto de protones, cuyo número es igual al de electrones (en un átomo no ionizado), y de neutrones. Estos últimos son eléctricamente neutros y su masa es aproximadamente igual a la de los protones. Una partícula alfa (un núcleo de helio con carga doble) está formada por dos protones y dos neutrones, por lo que sólo puede ser emitida por el núcleo de un átomo. Cuando un núcleo pierde una partícula alfa se forma un nuevo núcleo, más ligero que el original en cuatro unidades de masa (las masas del neutrón y el protón son de una unidad aproximadamente). Cuando un átomo del isótopo de uranio con número másico 238 emite una partícula alfa, se convierte en un átomo de otro elemento, con número másico 234. (El número másico de un núcleo es el número total de neutrones y protones que contiene; es aproximadamente igual a su masa expresada en unidades de masa atómica). Cada uno de los dos protones de la partícula alfa tiene una carga eléctrica positiva de valor unidad. El número de cargas positivas del núcleo, equilibrado por el mismo número de electrones negativos en las órbitas exteriores al núcleo, determina la naturaleza química del átomo. Como la carga del uranio 238 disminuye en dos unidades como resultado de la emisión alfa, el número atómico del átomo resultante es menor en dos unidades al original, que era de 92. El nuevo átomo tiene un número atómico de 90, y es un isótopo del elemento torio. Véase Elemento químico; Física nuclear.
El torio 234 emite partículas beta, es decir, electrones. La emisión beta se produce a través de la transformación de un neutrón en un protón, lo que implica un aumento de la carga nuclear (o número atómico) en una unidad. La masa de un electrón es despreciable, por lo que el isótopo producido por la desintegración del torio 234 tiene un número másico de 234 y un número atómico de 91; se trata de un isótopo del protactinio.

Radiación gamma

Las emisiones alfa y beta suelen ir asociadas con la emisión gamma. Los rayos gamma no poseen carga ni masa; por tanto, la emisión de rayos gamma por parte de un núcleo no conlleva cambios en su estructura, sino simplemente la pérdida de una determinada cantidad de energía radiante. Con la emisión de estos rayos, el núcleo compensa el estado inestable que sigue a los procesos alfa y beta. La partícula alfa o beta primaria y su rayo gamma asociado se emiten casi simultáneamente. Sin embargo, se conocen algunos casos de emisión alfa o beta pura, es decir, procesos alfa o beta no acompañados de rayos gamma; también se conocen algunos isótopos que emiten rayos gamma de forma pura. Esta emisión gamma pura tiene lugar cuando un isótopo existe en dos formas diferentes, los llamados isómeros nucleares, con el mismo número atómico y número másico pero distintas energías. La emisión de rayos gamma acompaña a la transición del isómero de mayor energía a la forma de menor energía. Un ejemplo de esta isomería es el isótopo protactinio 234, que existe en dos estados de energía diferentes, y en el que la emisión de rayos gamma indica la transición de uno al otro.



Los núcleos emiten la radiación alfa, beta y gamma a velocidades enormes. Las partículas alfa resultan frenadas y detenidas al pasar por la materia, sobre todo debido a su interacción con los electrones de dicha materia. Casi todas las partículas alfa emitidas por una misma sustancia salen de los núcleos con una velocidad prácticamente igual; por ejemplo, la mayoría de las emitidas por el polonio 210 viajan 3,8 cm por el aire antes de quedar detenidas completamente, mientras que las emitidas por el polonio 212 avanzan 8,5 cm. La medida de la distancia recorrida por las partículas alfa se emplea para identificar isótopos. Las partículas beta se emiten a velocidades mucho mayores que las partículas alfa, por lo que penetran bastante más en la materia, aunque el mecanismo de frenado es esencialmente similar. Sin embargo, a diferencia de las partículas alfa, las partículas beta son emitidas a muchas velocidades diferentes, y sus emisores se distinguen entre sí por las velocidades máxima y media características de sus partículas beta. La distribución de las energías de las partículas beta (y por tanto de sus velocidades) exige la hipótesis de la existencia de una partícula sin carga ni masa denominada neutrino; todas las desintegraciones beta están acompañadas de una emisión de neutrinos. La distancia recorrida por los rayos gamma es varias veces mayor que la de las partículas beta, y en algunos casos estos rayos pueden atravesar varios centímetros de plomo. Cuando las partículas alfa y beta atraviesan la materia originan la formación de numerosos iones; esta ionización es especialmente fácil de observar cuando la materia es gaseosa. Los rayos gamma no tienen carga, por lo que no causan tanta ionización. Las partículas beta producen entre t y z de la ionización generada por las partículas alfa en cada centímetro de su trayectoria en aire. Los rayos gamma producen aproximadamente t de la ionización de las partículas beta. El contador de Geiger-Müller y otras cámaras de ionización (véase Detectores de partículas) se basan en estos principios y se emplean para detectar las cantidades de radiación alfa, beta y gamma y, por tanto, la tasa absoluta de desintegración o actividad de las sustancias radiactivas. Una de las unidades de actividad radiactiva, el curio, se basa en la tasa de desintegración del radio 226, que corresponde a 37.000 millones de desintegraciones por segundo por cada gramo de radio. Véase Efectos biológicos de la radiación.


Existen formas de desintegración radiactiva diferentes de las tres que se han mencionado. Algunos isótopos pueden emitir positrones, que son idénticos a los electrones pero de carga opuesta. Esta emisión suele clasificarse también como desintegración beta, y se denomina emisión beta más (β+) o positrón para distinguirla de la emisión de electrones negativos, más común. Se cree que la emisión de positrones se lleva a cabo mediante la conversión de un protón del núcleo en un neutrón, lo que provoca el descenso del número atómico en una unidad. Otra forma de desintegración, conocida como captura de electrón K, consiste en la captura de un electrón por parte del núcleo, seguida de la transformación de un protón en un neutrón. El resultado global también es la reducción del número atómico en una unidad. Este proceso sólo es observable porque la desaparición del electrón de su órbita provoca la emisión de rayos X. Algunos isótopos, en particular el uranio 235 y varios isótopos de los elementos transuránicos, pueden desintegrarse mediante un proceso de fisión espontánea en el que el núcleo se divide en dos fragmentos (véase Energía nuclear). A mediados de la década de 1980, se observó una forma de desintegración única en la que los isótopos del radio con números másicos 222, 223 y 224 emiten núcleos de carbono 14 en lugar de desintegrarse en la forma normal emitiendo partículas alfa.

Núcleo Atómico

En 1919, Rutherford expuso gas nitrógeno a una fuente radiactiva que emitía partículas alfa. Algunas de estas partículas colisionaban con los núcleos de los átomos de nitrógeno. Como resultado de estas colisiones, los átomos de nitrógeno se transformaban en átomos de oxígeno. El núcleo de cada átomo transformado emitía una partícula cargada positivamente. Se comprobó que esas partículas eran idénticas a los núcleos de átomos de hidrógeno. Se las denominó protones. Las investigaciones posteriores demostraron que los protones forman parte de los núcleos de todos los elementos.
No se conocieron más datos sobre la estructura del núcleo hasta 1932, cuando el físico británico James Chadwick descubrió en el núcleo otra partícula, el neutrón, que tiene casi exactamente la misma masa que el protón pero carece de carga eléctrica. Entonces se vio que el núcleo está formado por protones y neutrones. En cualquier átomo, el número de protones es igual al número de electrones y, por tanto, a su número atómico. Los isótopos son átomos del mismo elemento (es decir, con el mismo número de protones) que tienen diferente número de neutrones. En el caso del cloro, uno de los isótopos se identifica con el símbolo 35Cl, y su pariente más pesado con 37Cl. Los superíndices identifican la masa atómica del isótopo, y son iguales al número total de neutrones y protones en el núcleo del átomo. A veces se da el número atómico como subíndice, como por ejemplo ·Cl.
Los núcleos menos estables son los que contienen un número impar de neutrones y un número impar de protones; todos menos cuatro de los isótopos correspondientes a núcleos de este tipo son radiactivos. La presencia de un gran exceso de neutrones en relación con los protones también reduce la estabilidad del núcleo; esto sucede con los núcleos de todos los isótopos de los elementos situados por encima del bismuto en la tabla periódica, y todos ellos son radiactivos. La mayor parte de los núcleos estables conocidos contiene un número par de protones y un número par de neutrones.

Caos, Teoría

Teoría del caos, teoría matemática que se ocupa de los sistemas que presentan un comportamiento impredecible y aparentemente aleatorio aunque sus componentes estén regidos por leyes estrictamente deterministas. Desde sus comienzos en la década de 1970, la teoría del caos se ha convertido en uno de los campos de investigación matemática con mayor crecimiento. Hasta ahora, la física, incluso si se consideran las ramificaciones avanzadas de la teoría cuántica, se ha ocupado principalmente de sistemas en principio predecibles, al menos a gran escala; sin embargo, el mundo natural muestra tendencia al comportamiento caótico. Por ejemplo, los sistemas meteorológicos de gran tamaño tienden a desarrollar fenómenos aleatorios al interaccionar con sistemas locales más complejos. Otros ejemplos son la turbulencia en una columna de humo que asciende o el latido del corazón humano.

Durante mucho tiempo, los científicos carecieron de medios matemáticos para tratar sistemas caóticos, por muy familiares que resultaran, y habían tendido a evitarlos en su trabajo teórico. A partir de la década de 1970, sin embargo, algunos físicos comenzaron a buscar formas de encarar el caos. Uno de los principales teóricos fue el físico estadounidense Mitchell Feigenbaum, que determinó ciertos esquemas recurrentes de comportamiento en los sistemas que tienden hacia el caos, esquemas que implican unas constantes ahora conocidas como números de Feigenbaum. Los esquemas del caos están relacionados con los que se observan en la geometría fractal, y el estudio de sistemas caóticos tiene afinidades con la teoría de catástrofes.

Predecibilidad, Predicción

Predicción tiene por etimología el latín pre+dicere, esto es, “decir antes”. Una vez sabido el significado general, conviene irlo afinando para ajustarlo a los usos que la práctica demanda. Por ello, no se trata sólo de “decir antes”, sino de “decirlo bien”, o sea, acertar; también, hacerlo con un plazo suficiente para poder tomar las medidas que se crean oportunas, y además tener una idea de hasta cuándo es posible predecir el futuro con cierto éxito.

Cuando se efectúa una predicción, se está estimando un valor futuro de alguna variable que se considere representativa de una cierta situación. Por ejemplo, en cuestiones climáticas podría tratarse de temperaturas medias de la atmósfera en determinados niveles, concentraciones de gases, precipitación, etc. También se pueden hacer predicciones espaciales, como la ubicación, movilidad e intensidad local de fenómenos extremos, caso por ejemplo de los huracanes y tormentas tropicales. Normalmente ambos tipos de predicción están ligados y se realizan a la vez, como lo prueban los productos que ofrecen las grandes agencias e institutos de Meteorología y Climatología.
Las estimaciones realizadas para predecir se denominan predictores. Pueden construirse de modos muy diversos, de algunos de los cuales nos ocuparemos en este trabajo, y su bondad se mide -como es natural- por el porcentaje de aciertos en situaciones del pasado predichas con igual técnica. Las bases de registros disponibles hoy día permiten realizar experimentos de predecibilidad con datos pasados y simular situaciones ya conocidas mediante diversas técnicas, estudiando y comparando los resultados. Es claro que para estos experimentos la tercera propiedad de la predicción no tiene demasiado interés, pues la predicción -o mejor, simulación- del pasado no incita a la prisa.
Sin embargo, en las predicciones día a día para fenómenos meteorológicos, o anualmente para situaciones climáticas, es conveniente que la predicción pueda llevarse a cabo con antelación suficiente. Por supuesto, hay predictores que se pueden formular de inmediato: por ejemplo tomemos lapermanencia y el paseo aleatorio. El primero consiste en suponer que la situación actual se prolongará hasta el momento para el que se quiere predecir; el segundo supone que la predicción es una mera cuestión de suerte. Ambos son predictores válidos y utilizados con frecuencia como “enemigos a batir” por cualquier otro diseño de predicción. Pero la predicción.no todos los métodos son tan rápidos, y lleva siempre cierto tiempo efectuar.

jueves, 20 de junio de 2013

Relatividad

Relatividad, teoría desarrollada a principios del siglo XX, que originalmente pretendía explicar ciertas anomalías en el concepto de movimiento relativo, pero que en su evolución se ha convertido en una de las teorías básicas más importantes en las ciencias físicas (véase Física). Esta teoría, desarrollada fundamentalmente por Albert Einstein, fue la base para que los físicos demostraran la unidad esencial de la materia y la energía, el espacio y el tiempo, y la equivalencia entre las fuerzas de la gravitación y los efectos de la aceleración de un sistema.


Física clásica

Las leyes físicas aceptadas de forma general por los científicos antes del desarrollo de la teoría de la relatividad —hoy denominadas leyes clásicas— se basaban en los principios de la mecánica enunciados a finales del siglo XVII por el físico y matemático británico Isaac Newton. La mecánica newtoniana y la relativista se diferencian por sus suposiciones fundamentales y su desarrollo matemático, pero en la mayoría de los casos no se distinguen apreciablemente en sus resultados finales; por ejemplo, el comportamiento de una bola de billar al ser golpeada por otra bola puede predecirse mediante cálculos matemáticos basados en cualquiera de los dos tipos de mecánica con resultados casi idénticos. Como la matemática clásica es muchísimo más sencilla que la relativista, es la que se emplea en este tipo de cálculos. Sin embargo, cuando las velocidades son muy elevadas —si suponemos, por ejemplo, que una de las bolas de billar se mueve con una velocidad próxima a la de la luz— las dos teorías predicen un comportamiento totalmente distinto, y en la actualidad los científicos están plenamente convencidos de que las predicciones relativistas se verían confirmadas y las clásicas quedarían refutadas.

Sin embargo, cuando las velocidades son muy grandes, como ocurre a veces en fenómenos astronómicos, las correcciones relativistas se hacen significativas. La relatividad también es importante para calcular comportamientos en distancias muy grandes o agrupaciones de materia de gran tamaño. A diferencia de la teoría cuántica, que se aplica a lo muy pequeño, la teoría de la relatividad se aplica a lo muy grande.
Hasta 1887 no había aparecido ninguna grieta en la estructura de la física clásica, que se estaba desarrollando con rapidez. Aquel año, el físico estadounidense Albert Michelson y el químico estadounidense Edward Williams Morley llevaron a cabo el llamado experimento de Michelson-Morley. El experimento pretendía determinar la velocidad de la Tierra a través del éter, una sustancia hipotética que, según se creía, transmitía la radiación electromagnética, incluida la luz, y llenaba todo el espacio. Si el Sol se encuentra en reposo absoluto en el espacio, la Tierra debería tener una velocidad constante de 29 km/s debido a su rotación en torno al Sol; si este astro y todo el Sistema Solar se están moviendo a través del espacio, el continuo cambio de dirección de la velocidad orbital de la Tierra hará que su valor se sume a la velocidad del Sol en algunas épocas del año y se reste en otras. El resultado del experimento fue totalmente inesperado e inexplicable: la velocidad aparente de la Tierra a través del hipotético éter era nula en todos los periodos del año.

Teoría de la relatividad especial


En 1905, Einstein publicó el primero de dos importantes artículos sobre la teoría de la relatividad, en el que eliminaba el problema del movimiento absoluto negando su existencia. Según Einstein, ningún objeto del Universo se distingue por proporcionar un marco de referencia absoluto en reposo en relación al espacio. Cualquier objeto (por ejemplo, el centro del Sistema Solar) proporciona un sistema de referencia igualmente válido, y el movimiento de cualquier objeto puede referirse a ese sistema. Así, es igual de correcto afirmar que el tren se desplaza respecto a la estación como que la estación se desplaza respecto al tren. Este ejemplo no es tan absurdo como parece a primera vista, porque la estación también se mueve debido al movimiento de la Tierra sobre su eje y a su rotación en torno al Sol. Según Einstein, todo el movimiento es relativo.
Ninguna de las premisas básicas de Einstein era revolucionaria; Newton ya había afirmado que “el reposo absoluto no puede determinarse a partir de la posición de los cuerpos en nuestras regiones”. Lo revolucionario era afirmar, como hizo Einstein, que la velocidad relativa de un rayo de luz respecto a cualquier observador es siempre la misma, aproximadamente unos 300.000 km/s. Aunque dos observadores se muevan a una velocidad de 160.000 km/s uno respecto al otro, si ambos miden la velocidad de un mismo rayo de luz, los dos determinarán que se desplaza a 300.000 km/s. Este resultado aparentemente anómalo quedaba demostrado en el experimento de Michelson-Morley. Según la física clásica, sólo uno de los dos observadores —como mucho— podía estar en reposo, mientras que el otro cometía un error de medida debido a la contracción de Lorentz-Fitzgerald experimentada por sus aparatos; según Einstein, ambos observadores tienen el mismo derecho a considerarse en reposo y ninguno de los dos comete un error de medida. Cada observador emplea un sistema de coordenadas como marco de referencia para sus medidas, y un sistema puede transformarse en el otro mediante una manipulación matemática. Las ecuaciones de esta transformación, conocidas como ecuaciones de transformación de Lorentz, fueron adoptadas por Einstein, aunque las interpretó de forma radicalmente nueva. La velocidad de la luz permanece invariante en cualquier transformación de coordenadas.
Según la transformación relativista, no sólo se modifican las longitudes en la dirección del movimiento de un objeto, sino también el tiempo y la masa. Un reloj que se desplace en relación a un observador parecería andar más lento y cualquier objeto material parecería aumentar su masa, en ambos casos en un factor igual al factor Γ (gamma mayúscula), inverso del factor g. El electrón, que acababa de descubrirse, proporcionaba un método para comprobar esta última suposición. Los electrones emitidos por sustancias radiactivas tienen velocidades próximas a la de la luz, con lo que el factor Γ podría llegar a ser de 2 y la masa del electrón se duplicaría. La masa de un electrón en movimiento puede determinarse con facilidad midiendo la curvatura de su trayectoria en un campo magnético; cuanto más pesado sea el electrón, menor será la curvatura de su trayectoria para una determinada intensidad del campo (véase Magnetismo). Los experimentos confirmaron espectacularmente la predicción de Einstein; el electrón aumentaba de masa exactamente en el factor que él había predicho. La energía cinética del electrón acelerado se había convertido en masa de acuerdo con la fórmula: E = mc2 (véase Átomo; Energía nuclear).
La hipótesis fundamental en la que se basaba la teoría de Einstein era la inexistencia del reposo absoluto en el Universo. Einstein postuló que dos observadores que se mueven a velocidad constante uno respecto de otro observarán unas leyes naturales idénticas. Sin embargo, uno de los dos podría percibir que dos hechos en estrellas distantes han ocurrido simultáneamente, mientras que el otro hallaría que uno ha ocurrido antes que otro; esta disparidad no es de hecho una objeción a la teoría de la relatividad porque según esta teoría, la simultaneidad no existe para acontecimientos distantes. En otras palabras, no es posible especificar de forma unívoca el momento en que ocurre un hecho sin una referencia al lugar donde ocurre. Toda partícula u objeto del Universo se describe mediante una llamada ‘línea del universo’, que traza su posición en el tiempo y el espacio. Cuando se cruzan dos o más líneas del universo, se produce un hecho o suceso. Si la línea del universo de una partícula no cruza ninguna otra línea del universo, no le ocurre nada, por lo que no es importante —ni tiene sentido— determinar la situación de la partícula en ningún instante determinado. La ‘distancia’ o ‘intervalo’ entre dos sucesos cualesquiera puede describirse con precisión mediante una combinación de intervalos espaciales y temporales, pero no mediante uno sólo. El espacio-tiempo de cuatro dimensiones (tres espaciales y una temporal) donde tienen lugar todos los sucesos del Universo se denomina continuo espacio-tiempo.
Todas las afirmaciones anteriores son consecuencias de la relatividad especial o restringida, nombre aplicado a la teoría desarrollada por Einstein en 1905 como resultado de su estudio de objetos que se mueven a velocidad constante uno respecto de otro.


Teoría de la relatividad general.


En 1915, Einstein desarrolló su teoría de la relatividad general, en la que consideraba objetos que se mueven de forma acelerada uno respecto a otro. Einstein desarrolló esta teoría para explicar contradicciones aparentes entre las leyes de la relatividad y la ley de la gravitación. Para resolver esos conflictos desarrolló un enfoque totalmente nuevo del concepto de gravedad, basado en el principio de equivalencia.
El principio de equivalencia afirma que las fuerzas producidas por la gravedad son totalmente equivalentes a las fuerzas producidas por la aceleración, por lo que en teoría es imposible distinguir entre fuerzas de gravitación y de aceleración mediante un experimento. La teoría de la relatividad especial implica que una persona situada en un vehículo cerrado no puede determinar mediante ningún experimento imaginable si está en reposo o en movimiento uniforme. La relatividad general implica que si el vehículo resulta acelerado o frenado, o toma una curva, el ocupante no puede afirmar si las fuerzas producidas se deben a la gravedad o son fuerzas de aceleración producidas al pisar el acelerador o el freno o al girar el vehículo bruscamente.
La aceleración se define como el cambio de velocidad por unidad de tiempo. Consideremos a un astronauta que está de pie en una nave estacionaria. Debido a la gravedad, sus pies presionan contra el suelo de la nave con una fuerza igual al peso de la persona, w. Si esa misma nave se encuentra en el espacio exterior, lejos de cualquier otro objeto y prácticamente no influida por la gravedad, el cosmonauta también se verá presionado contra el suelo si la nave acelera. Si la aceleración es de 9,8 m/s2 (la aceleración de la gravedad en la superficie terrestre), la fuerza con que el astronauta es presionado contra el suelo es de nuevo igual a w. Si no mira por la escotilla, el cosmonauta no tiene forma de saber si la nave está en reposo sobre la Tierra o está siendo acelerada en el espacio exterior. La fuerza debida a la aceleración no puede distinguirse en modo alguno de la fuerza debida a la gravedad. Einstein atribuye todas las fuerzas, tanto las gravitacionales como las asociadas convencionalmente a la aceleración, a los efectos de la aceleración. Así, cuando la nave está en reposo sobre la superficie terrestre, se ve atraída hacia el centro de la Tierra. Einstein afirma que este fenómeno de atracción es atribuible a una aceleración de la nave. En el espacio tridimensional, la nave se encuentra estacionaria, por lo que no experimenta aceleración; sin embargo, en el espacio-tiempo de cuatro dimensiones, la nave está moviéndose a lo largo de su línea del universo. Según Einstein, la línea del universo está curvada debido a la curvatura del continuo espacio-tiempo en la proximidad de la Tierra.
Así, la hipótesis de Newton de que todo objeto atrae a los demás objetos de forma directamente proporcional a su masa es sustituida por la hipótesis relativista de que el continuo está curvado en las proximidades de objetos masivos. La ley de la gravedad de Einstein afirma sencillamente que la línea del universo de todo objeto es una geodésica en el continuo. Una geodésica es la distancia más corta entre dos puntos, pero en el espacio curvado no es, normalmente, una línea recta. Del mismo modo, las geodésicas en la superficie terrestre son los círculos máximos, que no son líneas rectas en los mapas corrientes
La preocupación de la opinión pública en torno a la aceptabilidad de la energía nuclear procedente de la fisión se debe a dos características básicas del sistema. La primera es el elevado nivel de radiactividad que existe en diferentes fases del ciclo nuclear, incluida la eliminación de residuos. La segunda es el hecho de que los combustibles nucleares uranio 235 y plutonio 239 son los materiales con que se fabrican las armas nucleares. Véase Lluvia radiactiva.
En la década de 1950 se pensó que la energía nuclear podía ofrecer un futuro de energía barata y abundante. La industria energética confiaba en que la energía nuclear sustituyera a los combustibles fósiles, cada vez más escasos, y disminuyera el coste de la electricidad. Los grupos preocupados por la conservación de los recursos naturales preveían una reducción de la contaminación atmosférica y de la minería a cielo abierto. La opinión pública era en general favorable a esta nueva fuente de energía, y esperaba que el uso de la energía nuclear pasara del terreno militar al civil. Sin embargo, después de esta euforia inicial, crecieron las reservas en torno a la energía nuclear a medida que se estudiaban más profundamente las cuestiones de seguridad nuclear y proliferación de armamento. En todos los países del mundo existen grupos opuestos a la energía nuclear, y las normas estatales se han hecho complejas y estrictas. Suecia, por ejemplo, pretende limitar su programa a unos 10 reactores. Austria ha cancelado su programa. En cambio, Gran Bretaña, Francia, Alemania y Japón siguen avanzando en este terreno.
El Consejo de Seguridad Nuclear (CSN) es el organismo encargado de velar en España por la seguridad nuclear y la protección radiológica. Informa sobre la concesión o retirada de autorizaciones, inspecciona la construcción, puesta en marcha y explotación de instalaciones nucleares o radiactivas, participa en la confección de planes de emergencia y promociona la realización de trabajos de investigación.

Teoría cuántica, Cuantos

La Teoría Cuántica es uno de los pilares fundamentales de la Física actual. Se trata de una teoría que reúne un formalismo matemático y conceptual, y recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX, para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes. 

Las ideas que sustentan la Teoría Cuántica surgieron, pues, como alternativa al tratar de explicar el comportamiento de sistemas en los que el aparato conceptual de la Física Clásica se mostraba insuficiente. Es decir, una serie de observaciones empíricas cuya explicación no era abordable a través de los métodos existentes, propició la aparición de las nuevas ideas. 

El origen de la Teoría Cuántica 

¿Qué pretendía explicar, de manera tan poco afortunada, la Ley de Rayleigh-Jeans (1899)? Un fenómeno físico denominado radiación del cuerpo negro, es decir, el proceso que describe la interacción entre la materia y la radiación, el modo en que la materia intercambia energía, emitiéndola o absorbiéndola, con una fuente de radiación. Pero además de la Ley de Rayleigh-Jeans había otra ley, la Ley de Wien (1893), que pretendía también explicar el mismo fenómeno. 

La Ley de Wien daba una explicación experimental correcta si la frecuencia de la radiación es alta, pero fallaba para frecuencias bajas. Por su parte, la Ley de Rayleigh-Jeans daba una explicación experimental correcta si la frecuencia de la radiación es baja, pero fallaba para frecuencias altas. 

La frecuencia es una de las características que definen la radiación, y en general cualquier fenómeno en el que intervengan ondas. Puede interpretarse la frecuencia como el número de oscilaciones por unidad de tiempo. Toda la gama de posibles frecuencias para una radiación en la Naturaleza se hallan contenidas en el espectro electromagnético, el cual, según el valor de la frecuencia elegida determina un tipo u otro de radiación. 

En 1900, Max Planck puso la primera piedra del edificio de la Teoría Cuántica. Postuló una ley (la Ley de Planck ) que explicaba de manera unificada la radiación del cuerpo negro, a través de todo el espectro de frecuencias. 




Teoría cuántica, teoría física basada en la utilización del concepto de unidad cuántica para describir las propiedades dinámicas de las partículas subatómicas y las interacciones entre la materia y la radiación. Las bases de la teoría fueron sentadas por el físico alemán Max Planck, que en 1900 postuló que la materia sólo puede emitir o absorber energía en pequeñas unidades discretas llamadas cuantos. Otra contribución fundamental al desarrollo de la teoría fue el principio de incertidumbre, formulado por el físico alemán Werner Heisenberg en 1927, y que afirma que no es posible especificar con exactitud simultáneamente la posición y el momento lineal de una partícula subatómica.

La mecánica cuántica resolvió todas las grandes dificultades que preocupaban a los físicos en los primeros años del siglo XX. Amplió gradualmente el conocimiento de la estructura de la materia y proporcionó una base teórica para la comprensión de la estructura atómica (véase Átomo) y del fenómeno de las líneas espectrales: cada línea espectral corresponde a la emisión o absorción de un cuanto de energía o fotón, cuando un electrón experimenta una transición entre dos niveles de energía. La comprensión de los enlaces químicos se vio radicalmente alterada por la mecánica cuántica y pasó a basarse en las ecuaciones de onda de Schrödinger. Los nuevos campos de la física —como la física del estado sólido, la física de la materia condensada, la superconductividad, la física nuclear o la física de partículas elementales— se han apoyado firmemente en la mecánica cuántica.

Átomo

Átomo (A= no, tomo=divisible)
Átomo, la unidad más pequeña posible de un elemento químico. En la filosofía de la antigua Grecia, la palabra "átomo" se empleaba para referirse a la parte de materia más pequeño que podía concebirse. Esa "partícula fundamental", por emplear el término moderno para ese concepto, se consideraba indestructible. De hecho, átomo significa en griego "no divisible". El conocimiento del tamaño y la naturaleza del átomo avanzó muy lentamente a lo largo de los siglos ya que la gente se limitaba a especular sobre él.

Masa atómica


De la ley de Avogadro se desprende que las masas de un volumen patrón de diferentes gases (es decir, sus densidades) son proporcionales a la masa de cada molécula individual de gas. Si se toma el carbono como patrón y se le asigna al átomo de carbono un valor de 12,0000 unidades de masa atómica (u), resulta que el hidrógeno tiene una masa atómica de 1,0079u, el helio de 4,0026, el flúor de 18,9984 y el sodio de 22,9898. En ocasiones se habla de "peso atómico" aunque lo correcto es "masa atómica". La masa es una propiedad del cuerpo, mientras que el peso es la fuerza ejercida sobre el cuerpo a causa de la gravedad.

La observación de que muchas masas atómicas se aproximan a números enteros llevó al químico británico William Prout a sugerir, en 1816, que todos los elementos podrían estar compuestos por átomos de hidrógeno. No obstante, medidas posteriores de las masas atómicas demostraron que el cloro, por ejemplo, tiene una masa atómica de 35,453 (si se asigna al carbono el valor 12). El descubrimiento de estas masas atómicas fraccionarias pareció invalidar la hipótesis de Prout hasta un siglo después, cuando se descubrió que generalmente los átomos de un elemento dado no tienen todos la misma masa. Los átomos de un mismo elemento con diferente masa se conocen como isótopos. En el caso del cloro, existen dos isótopos en la naturaleza. Los átomos de uno de ellos (cloro 35) tienen una masa atómica cercana a 35, mientras que los del otro (cloro 37) tienen una masa atómica próxima a 37. Losexperimentos demuestran que el cloro es una mezcla de tres partes de cloro 35 por cada parte de cloro 37. Esta proporción explica la masa atómica observada en el cloro.

martes, 7 de mayo de 2013

Luz, Refracción, Lentes

La luz está formada por ondas, se propaga en todas direcciones y siempre en línea  recta. Las ondas luminosas son diferentes a las ondas sonoras, ya que pueden  propagarse a través del vacío y se llaman ondas electromagnéticas. El hombre sólo  puede ver algunas de estas ondas, las que forman el espectro luminoso visible. El sol es  la fuente luminosanatural de la Tierra. Los objetos que reciben la luz se llaman cuerpos  iluminados. Como la luz blanca en realidad está compuesta por siete colores, de  acuerdo al tipo de luz que absorben y que reflejan, vemos los objetos de diferentes  colores.


Propiedades de la luz.
Algunas propiedades de la luz dependen del tipo de fuente luminosa que las emita, como el color, la intensidad…
Sin embargo, existen otras propiedades como la reflexión y la refracción, que son comunes a todos los tipos de la luz.
 
La reflexión de la luz es el cambio de dirección que experimenta la luz cuando choca contra un cuerpo.
Los espejos son cuerpos opacos, con una superficie lisa y pulimentada, capaces de reflejar la luz que reciben.
Los espejos pueden ser planos o esféricos.
Los espejos planos forman imágenes igual de grandes que los objetos que las originan.
Los espejos esféricos forman imágenes distorsionadas.
Espejo planoEspejo cóncavoEspejo convexo

La refracción de la luz. Es el cambio de dirección que experimenta la luz cuando pasa de un medio a otro diferente, por ejemplo, cuando pasa del aire al agua.

La refracción de la luz sirve para ver los objetos con un tamaño diferente del real. Esto se consigue con el uso de lentes.

Las lentes son cuerpos trasparentes con la superficie curva que refractan la luz. Pueden ser:

Convergentes. Hacen que los rayos se junten. Las lupas son lentes convergentes.
Divergentes. Hacen que los rayos se separen.